MARKING SCHEME PHYSICS MODEL PAPER CLASS 9

RUBRICS

Section-B

Item no	Question(Description)	Reference
i	Differentiate between base and derived physical quantities by	KPTBB
	giving one example of each.	Grade 9 th
	Possible answer:	Page#7,8
	Base Physical Quantities: Minimum number of physical	
	quantities in terms of which all other physical quantities	
	can be expressed are called base quantities.	
	Examples: Any one of these (length, mass, time, electric	
	current, thermodynamic temperature, amount of substance,	
	luminous intensity)	
	Derived Physical Quantities: The physical quantities	
	defined in terms of base quantities are called derived	
	physical quantities.	
	Examples: Any one example (area, volume, speed, velocity,	
	acceleration, density, force, pressure, energy)	
	according, action, force, pressure, energy,	
Marking	1+1+1+1	4
ii	Write four steps to calculate the slope of graph in Cartesian	KPTBB
	coordinate system.	Grade 9 th
	Possible answer:	Page#43
	The slope of the graph means vertical coordinate difference	
	divided by horizontal coordinate difference. The slope of the	
	graph in Cartesian coordinate system can be calculated as:	
	1. Pick two points e.g., P_1 and P_2 .	
	2. Determine the coordinates $P_1(X_1, Y_1)$ and $P_2(X_2, Y_2)$, by	
	drawing perpendicular on X and Y-axis from both points.	
	3. Determine the difference between X-coordinates ($\Delta X=X_2$	
	-X ₁) and Y coordinates ($\Delta Y = Y_2 - Y_1$).	
	4. Dividing the difference in Y-coordinates by difference in	
	X-coordinates gives slope.	
	A-coordinates gives slope.	
Marking	1 mark for each point 1+1+1+1	4
iii	A body of mass 6kg is moving with an acceleration of	KPTBB
	$5m/sec^2$. Find its change in momentum in 10 sec.	Grade 9 th
	Possible answer:	Page#70
	Given data:	
	m = 6 kg	
	$a=5m/s^2$	
	t = 10 sec	
	To find:	
	$\Delta P=?$ (1 mark)	
	Formula: $\Delta r - i$ (1 mark)	
	AP	
	$F = \frac{\Delta P}{\Delta t}$ (1 mark)	

[$\Delta \mathbf{D} = \mathbf{E} + \Delta t$	
	$\Delta \mathbf{P} = \mathbf{F} \mathbf{x} \Delta \mathbf{t}$	
	Solution:	
	$\Delta \mathbf{P} = \max \Delta \mathbf{t} $	
	$\Delta P = 6x5x10 \qquad (1 \text{ mark})$	
	Answer:	
	$\Delta P = 300 \text{kgm/s.}$ (0.5+0.5)	
	Answer+Unit	
Marking	1+1+1+1	4
iv	Prove that $K.E = \frac{1}{2}mv^2$	KPTBB
1,		Grade 9 th
	Possible answer:	Page#153
	Consider a body which is initially at rest. A horizontal force F	1 agen 155
	is applied to it comes it to move through a displacement 'S'	
	and achieve final velocity $v_f = v$. The work done W appears as	
	the K.E. Such that	
	$W=K.E=F \times S$ (1) (1 mark)	
	By Newton's Second law of motion	
	F = ma(2)	
	By 3 rd equation of motion $2aS = V_f^2 - V_i^2$	
	Rearranging S= $\frac{V_f^2 - V_i^2}{2\pi}$ (3) (1 mark)	
	20	
	Putting 2 and 3 in 1 $V^2 V^2$	
	K.E= ma x $\frac{V_f^2 - V_i^2}{2a}$ K.E= m x $\frac{V_f^2 - V_i^2}{2}$ (1 mark)	
	2a $V\epsilon^2 - Vi^2$	
	$K.E = m x \frac{f}{2} $ (1 mark)	
	As the object started from rest therefore, $V_i=0$ and $V_f=V$	
	$K.E = \frac{1}{2}mv^2 \qquad (1 mark)$	
	$\mathbf{K} = \frac{1}{2} \mathbf{M} \mathbf{V}$ (1 mark)	
M 1'	1.1.1.1	4
Marking	1+1+1+1	4
v	Write any two advantages and disadvantages of friction.	KPTBB
	Possible answer:	Grade 9 th
	Advantages of friction:	Page#81,82
	i) Our ability to walk depends on friction between the solar of	
	i) Our ability to walk depends on friction between the soles of	
	our shoes (or feet) and the ground.	
	ii) Friction holds the screw and nails in wood.	
	Disadvantages of friction:	
	i) It slows down moving object and causes heating of moving	
	parts in machinery.	
	parts in machinery.	
	ii) Energy is wasted to overcome friction in machinery.	
Mc -1-'	2.2	A
Marking	2+2	4
vi	Define torque, what happens to the magnitude of torque when	KPTBB
	moment arm is doubled?	Grade 9 th
	Possible answer:	Page#112
	Torque:	
	"Turning effect produced in a body about a	

<u>Warking</u> viii	$\frac{1+1+1+1}{1}$ Derive mathematical form of Newton's law of universal gravitation. Possible answer: Statement: "Everybody in the universe attracts every other body with a force which is directly proportional to the product of their masses and inversely proportional to the square of distance between their centers". (1 mark) Explanation: Consider two bodies of masses 'm ₁ ' and 'm ₂ ' separated by distance 'r'. By definition of Newton's law of universal gravitation, the force of gravity F _g is α_2m_1m (1) (1 mark) F_g	4 KPTBB Grade 9 th Page#130
Marking viii	gravitation. Possible answer: Statement: "Everybody in the universe attracts every other body with a force which is directly proportional to the	Grade 9 th
Marking vii	force". <u>Mathematical form:</u> $\vec{T} = \vec{F} \times \vec{d}$ (2) As torques depends directly on moment arm, when the moment is doubled, the magnitude of torque will also be doubled. (2) <u>2+2</u> Differentiate between static and dynamic equilibrium by giving one example of each. <u>Static equilibrium</u> : When a body is at rest under the action of several forces acting together and several torques acting on the body is said to be in static equilibrium.(1 mark) <u>Example</u> : A book resting on the table is in static equilibrium, the weight of book is balanced by a normal reaction force from the table. (1 mark)Any one example <u>Dynamic equilibrium</u> : When a body is moving at uniform	4 KPTBB Grade 9 th Page#120

[
	m=0.02kg	
	$c = 3 \times 10^8 m/s$	
	To Find: Energy=? (1 mark)	
	Formula:	
	From Einstein's equation	
	(1 mark) $E = mc^2$	
	Solution:	
	Putting the values	
	$E = 0.02 \times (3 \times 10^8)^2$	
	$E = 0.02 \times 9 \times 10^{16}$	
	$(1 \text{ mark})E = 0.18 \times 10^{16}$	
	Answer:	
	$(1 \text{ mark})E = 1.8 \times 10^{15} J$	
Marking	1+1+1+1	4
Х	Define pressure, derive its formula and unit	KPTBB
	Possible answer:	Grade 9 th
	<u>Pressure</u> : Pressure is defined as force per unit area.(1 mark) Formula:	Page#174
	Pressure is represented by letter 'P', if force 'F' is applied on	
	area 'A', the pressure is	
	$P = \frac{F}{4}$ (1 mark)	
	<u>Unit:</u> The SI unit of pressure is the newton per square meter	
	(N/m^2) , which is given a special name, the pascal(Pa).	
	$1 \text{ Pa} = 1 \text{N} / 1 \text{m}^2 (2 \text{ marks})$	
Marking	1+1+2	4
xi	Define thermal conductivity, write any three factors which	KPTBB
	affect the rate of flow of heat. Possible answer:	Grade 9 th Page#238
	Thermal conductivity:	1 age#230
	The quantity of heat which flows through one square meter of	
	area of substance in one second when a temperature	
	difference of 1K is maintained across a thickness of one	
	meter. (1 mark)	
	Factors: (Any three)	
	The rate of heat flow depends on:	
	The difference of temperature between the two faces or ends of conductor.	
	Length of conductor	
I	1	

	Cross sectional area of conductor	
	Nature of material	
Marking	1+1+1+1	4

Section-C

Item no	Question(Description)	Reference
2.(a)	Explain three types of motion with one example of	KPTBB
	each.	Grade 9 th
	Possible answer:	Page#31
	Translatory Motion:	
	In Translatory motion body	
	changes its position as a whole. The line or path of	
	motion could be straight or curved.	
	(0.5)	
	Example:	
	Any one example of Translatory motion	
	like motion of car, ball, falling bodies, rowing boats	
	and flying birds.	
	(0.5)	
	Potetory Motion: Potetion of a hody as a whole	
	<u>Rotatory Motion</u> : Rotation of a body as a whole around a fixed axis is called rotatory motion. (0.5)	
	<u>Example</u> : Any one example of rotatory motion like,	
	motion of wheel, hands of clock, blades or wings of	
	turning fan.(0.5)	
	<u>Vibratory Motion</u> : The repeated forward and	
	backward motion/to and fro motion of an object	
	about its mean position is called vibratory motion.	
	(0.5)	
	Example: Any one example of vibratory motion like	
	motion of mass attached to an elastic spring, motion	
	of swing or motion of plucked violin string.	
	(0.5)	
	0.5 : 0.5 : 0.5 : 0.5 : 0.5	2
Marking 2(h)	0.5+0.5+0.5+0.5+0.5+0.5	3
2(b)	A bullet accelerates the length of the barrel of a gun $0.9m$ long with a magnitude of 5.25 x $10^5 m/s^2$ Find	KPTBB Grade 9 th
	0.8m long with a magnitude of 5.35×10^5 m/s ² .Find	
	the speed of bullet when it exit the barrel.	Page#59
	Given data: S=0.8m	
	$a = 5.35 \times 10^5 \mathrm{m/s^2}$	
	$v_i = 0$	
	$\overline{\mathbf{To find:}}$	
	$v_f = ?$ (1 mark)	
	Formula:	
	$2aS = v_f^2 - v_i^2 \qquad (1 \text{ mark})$	
	Solution:	

	0 5 25 105 0.0 2 0	
	$2x 5.35 \times 10^5 \times 0.8 = v_f^2 - 0$	
	$v_f^2 = 85.6 \times 10^4$ (1 mark)	
	$v_f = 9.25 \text{ x } 10^2 \text{ m/s}.$	
	Answer: $v_f = 925 \text{ m/s}$ (1 mark)	
	$v_f = 925 \text{ m/s}$ (1 mark)	
Marking	1+1+1+1	4
3(a)	Determine the mass of earth by applying law of universal gravitation. Possible answer: Let an object of mass 'm _o ' be placed on the surface of earth. The distance between the centre of the body and earth is nearly equal to radius of earth 'r _E '. If the mass of earth is 'm _E ' then the force 'F _g ' with which earth attracts the body is given by law of gravitation. $F_{g} = \frac{m_o m_E}{r_E^2}$ (1)(1 mark) We know that the force of gravity is equal to the	KPTBB Grade 9 th Page#134
	weight of the body $F_g = W = m_o g$ (2) (1 mark) Comparing equation 1 and 2	
	we get $m_0 g_= \frac{m_0 m_E}{r_E^2}$	
	$g = G \frac{m_E}{r_E^2}$ (3)	
	Re-arranging $m_E = g \frac{r_E^2}{G}$ (4) (1 mark)	
	By putting values of 'G', 'g' and ' r_E ' we get	
	$m_E = 6 \ge 10^{24} \text{ kg.}$ (1 mark)	
Marking	1+1+1+1	4
3(b)	At which altitude above earth's surface would the gravitational accelerations be 4.9m/s ² ?	KPTBB Grade 9 th
	<u>Given data</u>	Page#134
	$g_{h}=4.9m/s^{2}$	
	$g = 9.8 m/s^2$	
	Radius of Earth, $r_E = 6.4 \times 10^6 m$ (1 mark)	
	<u>To find:</u>	
	Altitude above earth's Surface = $h = ?$	
	Formula: $g_h = \frac{gr_E^2}{(r_E + h)^2} $ (1 mark)	
	Solution:	

	$\mathbf{h} = \sqrt{\frac{gr_E^2}{g_h}} \cdot r_E$	
	Putting values	
	$h=2.6 \times 10^6 m$ (1 mark)	
4(a)	Explain the terms Stress, Strain and Young's modulus.	KPTBB Grade 9 th
	Possible answer:	Page#190,191
	Stress: The stress is defined as the force applied per unit area of cross section on an elastic body to produce deformation.	
	Mathematically it can be written as	
	Stress = Force/Area of cross section.	
	Stress = F/A	
	Unit: The SI unit of stress is Nm-2 or Pascal (Pa). (1 mark)	
	<u>Strain</u> : The strain is defined as the extension per unit length. Or It is the ratio of change in length to the original length of a body.	
	Mathematically, it can be written as;	
	Strain = extension/ original length	
	Strain = x/l	
	As strain is the ratio of two lengths, so, it does not have a unit. (1 mark)	
	Young's Modulus:	
	"The strain produced in an elastic body is directly proportional to the stress with in the limit of proportionality." Or	
	"It is the ratio of stress to the linear strain".	
	Mathematically, Stress \propto strain	
	Stress = Young's Modulus x Strain(i)	
	Where Young's Modulus is constant of proportionality and is denoted by "Y"	
	Now, rearrange the eq(i), we get Young's modulus = $\frac{Stress}{Strain}$	
	Whereas stress = F/A and strain = x/l	

	we get $Y = \frac{\frac{F}{A}}{\frac{X}{l}}$ (ii)	
	Rearrange the eq, $Y = \frac{F \times l}{A \times x}$	
	As young's modulus is constant of proportionality, so within elastic limit, the ratio is constant where value depends on the nature of materials.	
	Unit: The unit of young's modulus is N/m ² Or Nm ⁻²	
	(2 marks)	
Marking	1+1+2	4
4(b)	An 0.8m long, 1mm diameter steel guitar string must be tightened to a tension of 2000N by turning the tuning screws. By how much is the string stretched?	KPTBB Grade 9 th Page#190,191
	<u>Given data:</u>	
	L = 0.8m	
	D=1mm	
	$= 1 \mathrm{x} \ 10^{-3} \mathrm{m}$	
	$r = 0.5 \times 10^{-3} m$	
	F=2000N	
	$Y = 20 \times 10^{10} Pa$	
	To find:	
	X =? (1mark)	
	<u>Formula:</u> $Y = \frac{F \times l}{A \times x} $ (1 mark)	
	Solution: $x = \frac{F \times l}{A \times Y}$ $A = \pi r^{2}$	
	Putting values X = 1 cm (1 mark)	
Morking	1+1+1	3
Marking 5(a)	What is evaporation, and how the nature and	KPTBB
J(a)	temperature of liquid affect the rate of evaporation?	Grade 9 th
	Possible answer:	Page#224
	<u>Evaporation</u> : The process by which a liquid slowly changes into <u>vapours</u> at any temperature (<u>below its</u>	

Marking	1+1+1	3
	$C = 4735 \text{ Jkg}^{-1}\text{K}^{-1}$ (1 mark)	
	$C = \frac{200000}{2.2 \times 19.2}$	
	$C = \frac{\Delta Q}{m\Delta T} $ (1 mark) Solution:	
	Formula:	
	<u>To find:</u> Specific heat of metal, $C = ?$ (1 mark0	
	m = 2.2kg	
	Or 19.2 K	
	$\Delta T = 19.2 \text{ °C}$	
	$= 40.2^{\circ}CT_{2}$	
	$= 21^{\circ}CT_{1}$	
5(b)	$\underline{\text{Given data:}}$ $\Delta Q=200 \text{kJ}$	KPTBB Grade 9 th Page#232
	What is the specific heat of a metal substance if 200kJ of heat is needed to raise 2.2kg of the metal from 21 °C to 40.2°C?	
Marking	2+1+1	4
	Due to higher temperature, molecules of liquid at the surface have more kinetic energy and chances of escaping will increase and evaporation will be fast. His can be seen while ironing clothes. Under a hot iron wet clothes dry out quickly as the water evaporates quickly.(1 mark)	
	Temperature of liquid:	
	Liquid with low boiling points evaporates more rapidly than those with higher boiling points. For example the rate of evaporation of alcohol is higher than that of water .(1 mark)	
	Nature of liquid:	
	boiling point) without any aid of any external source of heat is called evaporation of liquids.(2 marks)	